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Abstract

There is broad interest in the space–time scaling behavior of infiltration over a watershed, but field data is lacking to identify

such scaling and the controlling factors. Here, theoretical effects of rainfall and saturated hydraulic conductivity (Ks) on space–

time infiltration are simulated using process-based numerical experiments in the framework of a universal multifractal (UM)

model. A series of rainfall and Ks fields are generated including both random, non-scaling fields and multifractal fields produced

using the UM model. By varying the UM model parameters based on physical considerations, rain and Ks fields with various

scaling characteristics are obtained. These rain and Ks data are then fed into a distributed rainfall-runoff model developed for

this study to produce space–time infiltration, including the effects of overland flow from upslope areas. The scaling properties of

the infiltration are then analyzed to find the impact from the rain and Ks fields mainly in terms of the connections among the UM

model parameters between the input and the output fields. Some of the major findings from this research are: (1) rainfall spatial

characteristics determine the scaling of infiltration only at very early times; (2) Ks, rather than rain, determines if the resulting

infiltration field displays scaling behavior after an adjusting period; (3) generally, the heterogeneity of a rain field and the

singularity and sparseness of a Ks field have strong impacts on infiltration; (4) usually, infiltration fields are statistically non-

homogeneous; and (5) if an infiltration field subject to space–time rain becomes less singular (localized large infiltration rates)

in time, it tends to become less sparse and more heterogeneous, and vice versa. The relationships and sensitivities identified

above help us understand some key factors controlling the potential scaling behavior of infiltration.
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1. Introduction

Surface infiltration is a vital component of the

hydrologic cycle; its importance has been realized for

many years and numerous studies have been devoted
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to the subject (e.g. Maller and Sharma, 1981; Dagan

and Bresler, 1983; Revol et al., 1997; Govindaraju

et al., 2001). Previous research on infiltration has

contributed primarily to our understanding of point

infiltration processes. However, surface infiltration is

characterized by considerable spatial and temporal

variations. Efforts to incorporate such variability in

point infiltration parameters based on the so-called

equivalent homogeneous parameters may not be valid
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in general. For example, Bresler and Dagan (1983,

p. 425) concluded “.stochastic modeling has to be

employed in order to derive the averaged variables

and the concept of equivalent uniform soil is not

valid.” To improve the accuracy of estimating

infiltration, there is a need for improved under-

standing of the complex temporal and spatial features

of infiltration, including effects of run-off/run-on

between land areas. Surface infiltration is closely

related to the characteristics of the driving forces such

as rainfall and saturated hydraulic conductivity (Ks).

The connection between the temporal and spatial

variability of such driving forces with infiltration is

another topic that has not received enough attention in

the literature.

Various approaches have been employed in the

literature to represent the temporal and spatial

variability of infiltration. Among them, Maller and

Sharma (1981) assumed lognormal distributions for

the parameters in the Philip’s infiltration model and

determined the corresponding distribution of infiltra-

tion flux. Dagan and Bresler (1983) used Green and

Ampt’s (1911) moving front concept and the

assumption of effective parameters to derive the

expectation and variance of the water flux as functions

of depth and time. Sivapalan and Wood (1986)

derived the cumulative distribution of ponding time

from lognormally distributed saturated hydraulic

conductivity (Ks) by using derived distribution theory,

and then obtained some quasi-analytical expressions

for estimating the mean and variance of infiltration as

functions of rainfall and Ks statistics. More recently,

Govindaraju et al. (2001) provided expressions for

describing the ensemble-averaged field-scale infiltra-

tion and predicting the time it took for a given areal

depth of water to infiltrate into the soil. These

expressions were derived assuming that saturated

hydraulic conductivity is represented by a homo-

geneous correlated lognormal random field, and

infiltration followed the Green–Ampt model, but the

effects of run-off/run-on were not considered.

Olsson (2002) analyzed the spatial variability of

soil–water redistribution in field soils based on

digitized images of dye 24 h after infiltration from

experiments carried out on three sites. Their research

showed that infiltration/redistribution in field soils

displayed multiscaling characteristics. They also fitted

the universal multifractal (UM) model to the dye
infiltration data and found that the simulated fields

reproduced key features of the observed data. To our

knowledge, the work of Olsson et al. has been the only

infiltration research conducted in the framework of

scaling. As described above, the majority of the

previous work done on the spatial variability of

infiltration has been based on traditional statistical or

stochastic approaches. The outcomes of the studies

are usually expressed as the general statistics of the

infiltration fields that are only suitable to the scale at

which the studies were conducted. Scaling theory is

an excellent approach for dealing with stochastic

processes across scales, provided the processes are

scaling. Some of the main driving forces of the

infiltration process, such as rainfall, hydraulic con-

ductivity, and topography, have been found to display

scaling behavior (Lovejoy and Schertzer, 1990; Over

and Gupta, 1994; Tessier et al., 1996; Liu and Molz,

1997; Lavallée et al., 1993). Moreover, some related

processes that influence infiltration, such as soil

moisture, have also been shown to display scaling

behavior (e.g. Rodriguez-Iturbe et al., 1995; Peters-

Lidard et al., 2001; Green and Erskine, 2004).

Considering the close connection between surface

infiltration and these scaling fields, it is logical to

hypothesize the scaling nature of infiltration.

The objective of this study is to acquire a better

understanding of the spatial and temporal variability

of surface infiltration processes. Specifically, this

objective is achieved by exploring the effects of two

of the main driving force and soil parameter, namely

rainfall and saturated hydraulic conductivity (Ks), on

infiltration using numerical experiments. A series of

rainfall and Ks fields are generated including both

random non-scaling fields and multifractal fields. By

varying the model parameters, rain and Ks fields with

various characteristics are obtained. These rain and Ks

data are then fed into a rainfall-runoff model to

produce the resulting infiltration field. The spatial and

temporal variability of infiltration are then examined

using scaling analysis to discern the effects from the

rain and Ks fields. Section 2 introduces the methods

employed in this study, such as the UM model used to

generate rainfall and Ks fields, and the rainfall-runoff

model utilized for determining the infiltration field.

Section 3 describes the general set-up of the numerical

experiments performed, such as the study area,

topography of the site, and the choices of the various
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model parameters. The specific results of the numeri-

cal experiments are presented in Section 4 where the

infiltration fields resulting from two types of rainfall

fields—steady and space–time—are examined.

Finally, Section 5 is dedicated to the summary and

conclusions of this research.
2. Methods

The study of the spatial and temporal variability of

infiltration, which is described herein, is based on

simulated rainfall and saturated hydraulic conduc-

tivity fields that are applied to a small watershed in

eastern Colorado. Although the watershed has topo-

graphic data and soil characteristics, no spatial rainfall

nor run-off data are available at that location. Thus,

the experimental study described herein is based on

simulated rainfall using parameters that have been

determined elsewhere and using a rainfall-runoff

model that has been calibrated and validated using a

USDA-ARS experimental watershed. The saturated

hydraulic conductivity Ks has been generated based

on soil properties measured at the referred watershed.

Despite the sparseness of available data, the study has

used procedures, models, and parameters that have

been widely discussed and published in literature.

The overall method followed in the research

reported herein may be summarized in three major

steps, namely: (1) simulation of the rainfall field based

on a multifractal model, (2) simulation of the

corresponding infiltration field by means of a

topographically-based distributed rainfall-runoff

model, and (3) scaling analysis and modeling of the

simulated infiltration field. The rainfall field was

simulated based on the UM model developed by

Schertzer and Lovejoy (1987) and based on a

lognormal random field. A rainfall-runoff model

(Meng, 2004) was used to determine the infiltration

field. The model was developed using well-known

physical–mathematical relationships representing the

various components of the hydrologic cycle of the

watershed. The infiltration component of the model is

a function of Ks. To account for the spatial variability

of Ks, UM and lognormal random field models were

utilized. Finally, the simulated infiltration field was

analyzed and fitted using a UM model to verify the

degree to which the field possesses multifractal
scaling properties. To explain the method in some

detail we first describe in Section 2.1 below some

underlying concepts of the UM model along with

parameter estimation and goodness of fit criteria for

the UM model. In addition, we include in the

Appendix A a summary of the algorithm for

generating a UM field. The rainfall-runoff model is

briefly described in Section 2.2, summarizing its basic

features, but a full description of the model can be

found in Meng (2004). Then, Section 2.3 discusses the

procedure followed for analyzing the scaling charac-

teristics of the simulated infiltration field.

2.1. Universal multifractal model

The most fundamental characteristic of a scaling

system is its scale invariance, i.e. its small and large-

scale statistical properties are related by a scale-

changing operation involving only the scale ratio

(Tessier et al., 1993). Two types of scaling processes

have been observed in the physical world: simple

scaling and multiscaling. In the language of fractals, a

simple scaling field is defined by one fractal set and

corresponds to a single fractal dimension, i.e. a simple

scaling field is monofractal. A multiscaling field

consists of a series of random scale functions rather

than a single function (as in the case of simple

scaling.) Each of these scale functions is defined by a

fractal subset, which often has a unique fractal

dimension or codimension (Schertzer and Lovejoy,

1987). Therefore, a multiscaling field is also called a

multifractal field (Parisi and Frisch, 1985). Simple

scaling is often too restrictive to hold for complex

geophysical processes. Multiscaling is a more general

framework for scale-invariant non-linear dynamics.

For convenience the term ‘scaling’ is used throughout

when referring to a multiscale system.

The model used for generating scaling rainfall and

Ks fields is the UM model developed by Schertzer and

Lovejoy (1987). This model also sets the framework

for the scaling analysis performed on surface infiltra-

tion herein. A brief summary of the generating

algorithm based on the UM model is given in Appendix

A. More complete descriptions of the UM model can be

found in, e.g. Schertzer and Lovejoy (1987) and

Pecknold et al. (1993). The UM model has the

advantage of fully characterizing a multifractal field

with only three parameters: a, C1 and H, where a is the
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Lévy index;C1 is the codimension of the mean process;

and H is the non-conservation parameter. The Lévy

index characterizes the degree of multifractality of a

scaling field (as opposed to monofractal). Large a

corresponds to a significant singularity in the field. The

codimension C1 defines the sparseness of the average

level of the field. The non-conservation parameter H

indicates the deviation of the observed field from

the underlying conservative (or statistically homo-

geneous) field. Thus, HZ0 corresponds to a con-

servative (or statistically homogeneous) field while a

largeH represents a high degree of heterogeneity in the

scaling field (Lavallée et al., 1993). By systematically

varying the three parameters within their respective

ranges, which are predefined based on physical

considerations, rainfall and hydraulic conductivity

fields with various characteristics can be obtained.

The double trace moment (DTM) technique is used

to estimate the UM model parameters (a and C1) from

conservative fields (Lavallée et al., 1993). The initial

estimate of the parameter H of a non-conservative

field may be obtained from the qth-order structure

function (Schmitt et al., 1995; Liu and Molz, 1997):

E½jRðzChÞKRðzÞjq�ZE½ðDRhÞ
q�ZAhxðqÞ (1)

where R is a multifractal function, E[ ] denotes

expected value; z is distance; h is distance increment

or lag; q is the order of structure function; and A is a

function of q. It may be shown that for qZ1 (i.e. first-

order structure function) x(q)ZH. Thus, an initial

estimate of H may be obtained from the slope of the

log–log plot of the first-order structure function versus

the distance increment. A fractional differentiation of

order initial H is applied to the non-conservative field

to achieve the initial underlying conservative field.

The parameters a and C1 of this initial conservative

field are then estimated using the DTM technique.

Meng (2004) found that the estimate of a is very

sensitive to the estimate of H if the conservative field

is obtained through fractional differentiation. Thus,

she suggested a refined estimation procedure that can

produce the more accurate estimates of the UM model

parameters. In the subject of this paper we followed

the DTM technique with the refinement suggested by

Meng (2004).

To evaluate the goodness of fit of the UM model

that is fitted to a certain field we compare the b
estimated from the power spectrum of the (sample)

field and the ‘theoretical’ value obtained from the

equation (Lavallée et al., 1993)

bZ 2HK
C1ð2

a K2Þ

aK1
C1 (2)

For spatial processes that evolve through time (such as

the infiltration process that we study herein) one could

make the comparison for a specific time or for a range

of times. In our study, when applying this goodness-of-

fit approach to the space–time infiltration processes,

we determine the relative root mean square difference

between the estimated b̂ and the ‘theoretical’ b in 10-

min increments (rather than the comparison of the b

values at single points in time). This value, denoted as

RRMSD_bI, measures how close the estimated and

theoretical bs are. Denoting the estimated b at 10-min

intervals as b̂, and the corresponding ‘theoretical’ b,

RRMSD_bI is defined as

RRMSD_bI Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
iZ1

b̂i Kbi

bi

 !2
vuut (3)

where n is the number of 10-min intervals considered

in the simulation experiment.
2.2. Rainfall-runoff model

A physically based, distributed rainfall-runoff

model was developed for the study on surface

infiltration (Meng, 2004). This model employs the

D-infinity flow direction model (Tarboton, 1997) to

define the routing hierarchy of a watershed down to

pixels. The D-infinity model is also used to delineate

the watershed for calibration and validation, and to

determine channels within the watershed. The event-

based rainfall-runoff model can handle variable

rainfall both in space and in time. Ponding time is

computed using a model that also can handle variable

rainfall. Hortonian run-off is taken to be the

mechanism for run-off generation, which is consistent

with observations. The Green–Ampt model is used to

compute infiltration capacity. Both run-off and run-on

are taken into consideration in the calculation of

infiltration. A kinematic wave model is adopted for

both overland and channel flow routing. Numerical

approximations to the routing equations employ an
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implicit finite difference scheme. Since the channels

in the study area (Section 3.1) are ephemeral, no base

flow has been considered in the rainfall-runoff model.

The rainfall-runoff model was calibrated and

validated using rainfall and run-off data collected

from the sub-watershed 11 (WG11) of the USDA-

ARS Walnut Gulch experimental watershed located in

a semi-arid area in Arizona. A sensitivity analysis

identified porosity and Ks as the most significant

parameters in their influence on the run-off of WG11.

Hence the pair of parameters was taken as the

calibration parameters. Different categories were

identified throughout WG11 for each calibration

parameter based on measurements and/or watershed

conditions. The relative magnitudes of the categories

were kept fixed during calibration and a uniform

multiplier was applied to each calibration parameter.

Five rainfall-runoff events were used for calibration

and gave satisfactory results. The pair of parameters

chosen from calibration was then applied to nine

rainfall-runoff events to validate the rainfall-runoff

model. The validation results showed that the model

could reasonably replicate the distributed watershed

processes such as infiltration and run-off over a

watershed—making it an acceptable rainfall-runoff

model for the scaling studies that follow (for more

details, cf. Meng, 2004).
   

Fig. 1. Power spectrum of a scaling field with R2Z0.0576 and the

modified spectrum after angle rotation with modified R2Z0.9898.
2.3. Scaling criteria

Before any scaling analysis can be performed on a

given field, the field must be shown to have scaling

behavior. A few approaches have been reported in the

literature to assess the scaling behavior of a given field

by exploring the moments, structure function, and

power spectrum, etc. (e.g. Gupta and Waymire, 1990;

Tessier et al., 1993; Schmitt et al., 1995; Liu and

Molz, 1997). The power spectrum method is chosen in

this study for checking whether a field is scaling (all

physical fields are assumed to be isotropic in this

research). The power spectrum of a scaling field has

the following form:

EðkÞzkKb (4)

where E(k) is power spectrum, k is wavenumber, and

b is a constant greater than zero. Eq. (4) suggests that

the power spectrum of a scaling field is log–log linear
against wavenumber with a negative slope. Radial

power spectrum is used in this research because the

fields of our study (e.g. infiltration) are embedded in a

2D space. A radial power spectrum is obtained by

angular integration in Fourier space.

Since the log-linearity of power spectra is an

indication of scaling, one must use a metric to check

whether the sample spectrum of a given field is log–

log linear; a modified R2 or coefficient of determi-

nation is used. The conventional R2 suffers from an

angle dependency. Therefore, the power spectrum of a

physical field is first rotated to uZK1, where u is the

slope of the linear regression line after rotation, before

its R2 is calculated. This approach is similar to using a

Nash and Sutcliffe (1970) measure of model effi-

ciency, where the predicted values come from the

idealized scaling model (Eq. (4)). Fig. 1 shows the

power spectrum of a scaling field, its R2 value

(0.0576) and the spectrum after angle rotation with

its modified R2 value (0.9898). Experiments were

conducted in order to determine a criterion based on

the value of the modified R2 (called mR2 hereafter for

the modified coefficient of determination). The

average mR2 obtained from 108 generated multifractal

fields is 0.945 (Meng, 2004). Because of the

uncertainties involved in simulating the infiltration

process, a more relaxed reference value of 0.90 is

taken herein to assess the linearity of the power

spectrum of the infiltration fields. Meng (2004)

showed that such a reduction in the reference value

is necessary to account for a reasonable amount of

noise (i.e. uncertainty) in the output fields. It is noted

that the reference mR2 value is intended to be an
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indicator of scaling behavior rather than a cutoff value

for scaling field. It would be physically unrealistic to

impose such a strict cutoff value. Thus, two terms are

used in this study to describe a field as ‘strongly

scaling’ or ‘scaling’ depending on whether its mR2 is

above or below 0.945, but fields with mR2 values

smaller than 0.9 are judged to be non-scaling.

In addition to the required mR2 value, the original

regression angle needs to be negative for a scaling

field to ensure that large features of a field contribute

more to the power spectrum than small features (bO0

in Eq. (4)).
Fig. 2. Defined channels in the small watershed at the ARS

experimental site on the Lindstrom Farm near Sterling, Colorado.
3. Description of the experiments

The general approach of this numerical study is to

generate both scaling and non-scaling rain and Ks

fields, input these simulated driving fields to the

rainfall-runoff model (Section 2.2) applied to a real

topography and soil properties, derive the resulting

space–time surface infiltration fields, and analyze the

statistical and scaling properties of the infiltration

fields such as the field average infiltration rate, mR2 of

logarithm of power spectrum, and fit and evaluate the

UM model to the infiltration field at 10-min intervals.

3.1. Study area

A USDA-ARS experimental site on the Lindstrom

Farm near Sterling, Colorado, USA is chosen to be the

study area for the numerical experiments. This is a

semi-arid area with high-intensity summer thunder-

storms. It has some ephemeral streams where Horto-

nian overland flow is the predominant mechanism for

run-off generation. The DEM data of the area has been

obtained from the USGS, and has a 30-m resolution

with 128!128 pixels. Thus, the size of the study area

is about 14.7 km2. The channels of the area are defined

using a contributing area threshold. The defined

channels compare favorably with the results of a

county survey. The dominant soil type of the study area

is loam. Fig. 2 shows the channels in the study area.

3.2. Model parameters

Both conservative and non-conservative rain fields

have been observed in nature (Tessier et al., 1993;
Pecknold et al., 1993; Harris et al., 1996). Tessier et al.

(1993) reported that the scaling parameters for radar

rain fields are aZ1.35, C1Z0.3, and HZ0 (i.e.

homogeneous); and the parameters from raingauge

data are aZ1.35, C1Z0.2, and HZ0. Based on this

information, the rain rate model parameters are chosen

to be in the ranges aZ1.2–1.8, C1Z0.2–0.4, and HZ
0–0.5, where non-zero H values are used to simulate

non-conservative (non-homogeneous) rain fields.

Some random lognormal rain fields were also used in

this study. Fig. 3 shows examples of generated scaling

rain fields based on the UM model with parameters

aZ1.5, C1Z0.3, and HZ0, 0.1, 0.2, and 0.5.

Some studies report that Ks and ln(Ks) data are

multifractal in horizontal and/or vertical directions

(Liu and Molz, 1997; Tennekoon et al., 2003). Also

144 steady state infiltration measurements collected

for the R-5 catchment at Oklahoma (Loague and

Gander, 1990) and additional data of hydraulic

conductivity taken at 15 locations in the R-5

catchment (Ahuja et al., 1984) have been analyzed

and shown to be scaling. In our study, the horizontal

Ks field is assumed to be multifractal and conforms to

the UM framework. The following parameter ranges

are used in the numerical experiments: aZ1.5–2.0,

C1Z0.01–0.05, and HZ0–0.5 where aZ2.0 corre-

sponds to the lognormal multifractal case. The small



Fig. 3. Rain fields generated by a UM model with parameters (a) aRZ1.5, C1RZ0.3, and HRZ0.0; (b) aRZ1.5, C1RZ0.3, and HRZ0.1;

(c) aRZ1.5, C1RZ0.3, and HRZ0.2; and (d) aRZ1.5, C1RZ0.3, and HRZ0.5.
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C1 values are used because natural Ks fields are known

to have little sparseness. Random lognormal Ks fields

were also applied in some cases. Fig. 4 shows three

examples of generated scaling Ks field based on the

UM model with parameters C1Z0.01, HZ0.2, and

aZ1.5, 1.75, and 2.0.
Fig. 4. Ks fields generated by a UM model with parameters (a) aKs
Z1.5

(c) aKs
Z2.0, C1Ks

Z0.01, HKs
Z0.2.
The porosity of loam (value of porosity of loan

used here) is applied throughout the study area in the

rainfall-runoff model. The field capacity, residual soil

moisture content, and wetting front suction at over-

land pixels are assumed to be functions of Ks and are

derived from Ks through empirical equations while
, C1Ks
Z0.01, HKs

Z0.2; (b) aKs
Z1.75, C1Ks

Z0.01, HKs
Z0.2; and
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they are constants at channel pixels with typical

values for loam soil. Manning’s n for overland flow

with a field crop is used for hillslope pixels; and

Manning’s n for natural, clean, basically straight

channels is used for channel pixels. Considering the

semi-arid nature of the study area, the initial soil

moisture is set to be dry in channels and medium dry

elsewhere throughout this study.

For each of the cases examined in the following

study, 25 simulations are run and the average

quantities are analyzed for scaling behavior. This

quasi-Monte Carlo approach is used to minimize the

uncertainty caused by the randomness of the gener-

ated input fields.
4. Results

The first group of rainfall-runoff experiments is

performed under the assumption of steady rainfall,

that is, the rain rate field is variable in space but

constant through time. Both scaling and non-scaling

steady rain and Ks fields are tested for their effects on

infiltration processes. The influence of scaling space–

time rainfall and scaling Ks fields on infiltration is also

examined with a series of experiments. The following

notations are used for subscripts below: R represents

rain rate, Ks represents Ks, and I represents infiltration.

4.1. Non-scaling steady rain and scaling Ks

Twenty-five lognormally distributed random rain

fields are generated with a mean of 3 cm/h and
  
 

 

 

Fig. 5. Average power spectrums of infiltration fields under non-

scaling steady rainfall and scaling Ks field (the lines have been offset

for clarity).
a standard deviation of 3 cm/h. The rain fields are

characterized by white noise and have an average

radial power spectrum with bRZK1.02 (Fig. 5). A

scaling Ks field is generated using the UM model with

a mean of 1.32 cm/h and the following scaling

parameters: aKs
Z2.0, C1Ks

Z0.01, and HKs
Z0.2. Its

power spectrum has a bKs
Z1.32 and mR2

Ks
Z0:97

(Fig. 5). Therefore, the Ks field is a strongly scaling

field. Each of the 25 steady rain fields and the scalingKs

field are input to the rainfall-runoff model to derive the

corresponding space–time infiltration processes. Fig. 5

shows the offset average power spectrum of the

infiltration fields at several points in time, along with

the average power spectrum of the steady rain fields

and the power spectrum of the Ks field. It is observed

that the power spectrum of the infiltration field

resembles that of the steady rain field at the beginning

of the infiltration process, and as time evolves it

gradually becomes more similar to that of the Ks field

especially at lower wavenumbers. This observation is

in agreement with the known fact that rainfall has a

dominant effect on surface infiltration in the early stage

of an infiltration process, and soil properties (particu-

larly Ks) become more important than rain in

determining the properties of the infiltration field as

rainfall continues. The slopes and the values of mR2
I of

the average infiltration power spectra are plotted in

Fig. 6 (note the dualY-axes). This figure reveals that the

infiltration field is non-scaling in the early stage of the

process as indicated by the positive slope of the power

spectrum. As time progresses, the slope turns negative

and the mR2
I becomes stable at a level around the mR2

reference value, suggesting that the infiltration field
Fig. 6. Slopes and mR2
I of the average power spectrums of

infiltration fields under non-scaling steady rainfall and scaling Ks

field.
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becomes scaling. It is concluded from this set of

experiments that a non-scaling rain field determines

the non-scaling nature of its corresponding infiltration

field in the early stage of the process. However, such an

infiltration field eventually becomes scaling where the

Ks field is scaling.
Fig. 8. Slopes and mR2
I of the average power spectrums of

infiltration fields under scaling steady rainfall and non-scaling Ks

field.
4.2. Scaling steady rain and non-scaling Ks

To test the effect of scaling steady rain and non-

scaling Ks on infiltration, 25 lognormally distributed

random Ks fields are generated with a mean of

1.32 cm/h and a standard deviation of 0.7 cm/h. The

average power spectrum of the Ks fields has bZK1

(Fig. 7), i.e. the Ks fields are characterized as white

noise. The scaling rain field used in these experiments

is generated using the UM model. It has a mean of

3 cm/h and the following parameters: aRZ1.5, C1RZ
0.2, and HRZ0.5. Its power spectrum has a bRZ1.59

with mR2
RZ0:97 (Fig. 7), which reveals that the rain

field is strongly scaling.

Fig. 7 shows the power spectra of the correspond-

ing infiltration fields at a few points in time along with

the power spectra of the rain and Ks fields. The power

spectra of the infiltration fields show a dominant effect

from the rain field at the early stage and a gradually

stronger influence from the Ks field as time progresses

especially at the high wavenumbers. The time series

of the slopes and the mR2
I of the average power spectra

are presented in Fig. 8. It shows that the infiltration

field is scaling for a short period of time at the
Fig. 7. Average power spectrums of infiltration fields under scaling

steady rainfall and non-scaling Ks field (the lines have been offset

for clarity).
beginning of the infiltration process because of the

influence of the scaling rain, and then becomes non-

scaling as revealed by the small mR2
I value (about

0.76) and the rapidly increasing spectrum slope.

These results demonstrate that an infiltration process

will be scaling at the early stage if the rain field is

scaling, but will become non-scaling in time as long as

the Ks field is non-scaling.
4.3. Scaling steady rain and scaling Ks

Three UM model parameters of both the scaling

steady rain fields and the scaling Ks fields are

examined for their respective effect on infiltration.

The rain parameter aR is the first one to be analyzed

through three sets of experiments. Each set has the

same C1R (0.2) and HR (0.2) but different aR (1.2, 1.5,
Fig. 9. Effect of aR on the field average surface infiltration rates

under scaling steady rain fields and scaling Ks field (aKs
Z2.0,

C1Ks
Z0.01, and HKs

Z0.2).



Fig. 10. Effect of aR on mR2
I of the infiltration fields under scaling

steady rain and scaling Ks fields (aKs
Z2.0, C1Ks

Z0.01, and HKs
Z

0.2).

α I
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or 1.8). The scaling Ks field used in all the experiments

is generated using the UM model with the following

parameters: aKs
Z2.0, C1Ks

Z0.01, and HKs
Z0.2. Fig.

9 shows the field average infiltration rates for the three

sets of rain fields. It is observed that the field average

infiltration increases as aR becomes smaller.

Combined with the scaling Ks field, all three

scaling rain fields yield scaling infiltration fields for

all times, as the high values of the mR2
I of the power

spectra in Fig. 10 indicate good log-linearity of the

power spectra. It is noted that the power spectra of

infiltration fields always have negative slopes under

scaling rain and scaling Ks.

Fig. 11 compares the ‘theoretical’ and the esti-

mated b of the infiltration fields from the first set of

rain. The RRMSD_bI of the estimated b series is

0.08—indicating that the UM model fits to
Fig. 11. Comparison of the theoretical and the estimated bI of the

infiltration field under scaling steady rain field (aRZ1.2, C1RZ0.2,

HRZ0.2) and scaling Ks field (aKs
Z2.0, C1Ks

Z0.01, and HKs
Z0.2).
the infiltration process well. In this case, the

estimated b appears to converge to the ‘theoretical’

b—indicating that the UM model fits better to

the infiltration field as the latter develops. It is

important to point out that a large degree of

uncertainty is involved in determining the value of

RMSD_bI. Besides the fact that the ‘theoretical’ b is

essentially an estimate itself, the estimated b is also

very sensitive to the range of wavenumbers used to
Fig. 12. Effect of aR on the estimated infiltration parameters (a) aI,

(b) C1I, and (c) HI, under scaling steady rain fields and scaling Ks

field (aKs
Z2.0, C1Ks

Z0.01, and HKs
Z0.2).
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derive the parameter. The power spectrum corre-

sponding to the 10 lowest wavenumbers are used in

this study to estimate b. Fig. 12 presents the time

series of the estimated infiltration scaling parameters

from the three sets of experiments. Little systematic

variation is observed in the infiltration parameters as

aR changes. Therefore, it is concluded that the

singularity of the rain field has minor effect on the

scaling properties of the infiltration field.
Fig. 13. Effect of HR on the estimated infiltration parameters (a) aI,

(b) C1I, and (c) HI, under scaling steady rain fields and scaling Ks

field (aKs
Z2.0, C1Ks

Z0.01, and HKs
Z0.2).
To examine the effect of rain parameter HR on

infiltration, four sets of rain fields are generated, each

with different HR (0.0, 0.1, 0.2, or 0.5) but the same aR

(1.5) and C1R (0.3). The Ks field employed has the

following parameters: aKs
Z2.0, C1Ks

Z0.01, and

HKs
Z0.2. The corresponding infiltration fields are

found to be either strongly scaling or scaling. Fig. 13

shows the time series of the estimated infiltration

parameters. The influence of the rain heterogeneity

(HR) on infiltration is strong. Rain heterogeneity is

proportional to infiltration heterogeneity and inver-

sely proportional to the singularity and sparseness of

infiltration field.

Table 1 summarizes the effects of rainfall and Ks

parameters on the various aspects of infiltration fields

as observed in the numerical experiments performed

above. Only the most significant influences are

specified by up or down arrows (indicating positive

or negative correlation between the input field

parameters and the infiltration properties). It is noted

that the singularity of a Ks field only shows a strong

effect on the singularity and sparseness of an infiltration

field when the former approaches 2.0, i.e. aKs
is large.

4.4. Scaling space–time rain and scaling Ks

Rainfall in the real world is characterized by

variations both in space and in time. Thus, it is

essential to add the temporal dynamics of rain field to

the study of infiltration process. In the absence of a

practical space–time rain model that fits into the

framework of UM, a series of ‘space–time’ rain fields

is generated using the UM model as explained below.

First, a large rain field with 2048!2048 pixels—

the largest scaling field that can be generated with the

available computer resources—is generated using the

UM model. Then consecutive cutouts from this large

field with the size of 128!128 pixels are taken as

‘space–time’ rain fields at one pixel apart. This in

effect adds advection to a steady rain field. If advection

is assumed to be 10 m/s, moving one pixel at a time

translates to a time step of 3 s, and a total of 96 min of

rainfall can be extracted from the large rain field.

Ninety-minute ‘space–time’ rainfalls are applied to

the experiments carried out in this section. The

average rain intensity of the large rain field is 3 cm/h.

To examine the effect of HR on infiltration, four

types of rain fields are generated with the following



Table 1

Effect of parameters of scaling steady rain and scaling Ks on infiltration

Average field infil-

tration rate (cm/h)

Scaling

(minimum mR2
I )

Average

RRMSD_bI

Singularity (aI) Sparseness (C1I) Heterogeneity

(HI)

aR – Yes (0.92) 0.09 – – –

C1R Y* Yes (0.92) 0.10 – – –

HR [ Yes (0.89) 0.19 Y Y [
aKs

– Yes (0.90) 0.06 ðaKs
����/[2:0Þ ðaKs

����/[ 2:0Þ –

C1Ks
– Yes (0.91) 0.07 – – –

HKs
– Yes (0.89) 0.05 – – –

*[ means strong positive correlation, Y means strong negative correlation, and – means weak to medium correlation. mR2
I is the modified

coefficient of determination for infiltration scaling.

 

Fig. 14. Effect of HR on the field average surface infiltration rates

under scaling space–time rain fields and scaling Ks field (aKs
Z2.0,

C1Ks
Z0.01, and HKs

Z0.2).
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parameters: aRZ1.2, C1RZ0.2, and HRZ0.0, 0.1,

0.3, or 0.5. At the early stage of the infiltration

process, when the soil is fairly dry, the field

average infiltration rate of the resulting infiltration

fields is negatively correlated to HR (Fig. 14). This

correlation becomes small and even reverses

direction as soil becomes more saturated in time.

The dynamics introduced in the space–time rain are

responsible for the different pattern in the field

average infiltration from the simple case of steady

rain.

The infiltration fields under the four sets of rain

fields are scaling (minimum mR2
I Z0:88). Fig. 15

displays the time series of the estimated scaling

parameters of the infiltration fields. The rain

heterogeneity shows a strong and non-unidirectional

influence on the infiltration parameters. The singu-

larity and the sparseness of the infiltration fields are

proportional to the rain heterogeneity if the rain

field is homogeneous (HRZ0) or close to homo-

geneous, but become inversely proportional to the

latter as the rain field becomes more heterogeneous.

The heterogeneity of the infiltration fields varies

with the rain in the opposite direction to the

singularity and sparseness of the infiltration fields.

Other important features of the infiltration process

under the space–time rain are the temporal trends

exhibited in the time series of the scaling

parameters. While these trends are somewhat

detectable in some of the steady rain cases, they

are consistent and more clear in all of the

experiments under the space–time rain. It is

observed that the directions of the temporal trends

are determined by the rain heterogeneity. The

singularity (aI) and the sparseness (C1I) of the
infiltration field decrease in time if the rain field

has a low degree of heteogeneity. Otherwise, the

two parameters will reverse the trend and increase

in time. The heterogeneity of the infiltration field

has a rising temporal trend if the rain field is more

homogeneous, but does not show a clear trend as

the rain field becomes highly heterogeneous.

All the scaling parameters of the space–time

rain and Ks fields are investigated for their

individual effects on infiltration. Table 2 summar-

izes the results from these experiments. Arrows are

used to mark only the strongest correlations

between rain and Ks parameters and infiltration

properties. Some differences are evident between

these infiltration fields and those under steady rain,

although they share many common features. In

particular, we see the dominant effects of HR on all

of the scaling parameters of the resulting infiltra-

tion fields.



Fig. 15. Effect of HR on the estimated infiltration parameters (a) aI,

(b) C1I, and (c) HI, under scaling space–time rain fields and scaling

Ks field (aKs
Z2.0, C1Ks

Z0.01, and HKs
Z0.2).
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5. Summary and conclusions

Rainfall and Ks fields with various characteristics

have been generated and used as input to a Hortonian

rainfall-runoff model to produce space–time infiltra-

tion processes. The properties of the infiltration

processes, such as the traditional statistics, power

spectrum, and scaling characteristics are then ana-

lyzed to find the impacts on scaling behaviors of
the infiltration fields. Some criteria are defined in this

research to assess the scaling behavior of the

infiltration fields and to judge the goodness of fit of

the UM model to the infiltration fields. The UM model

parameters of the infiltration fields are then estimated

using a refined approach developed for estimating UM

model parameters of non-conservative scaling fields.

Non-scaling steady rainfall and hydraulic conduc-

tivity fields are first tested for their general influences

on infiltration. If the rain field is non-scaling, but the

Ks field is scaling, the infiltration process is found to

become scaling eventually. The infiltration field will

become non-scaling soon after rain stops. On the other

hand, if the Ks field is non-scaling, the infiltration

process will be non-scaling, except at very early

times, if the rainfall field is scaling. Hence, the Ks field

rather than the rain field determines if the resulting

infiltration field is scaling after an adjusting period.

A series of steady (i.e. constant in time) scaling

rainfall and scaling Ks fields are generated using the

UM model to study their effects on infiltration. The

corresponding infiltration fields are either strongly

scaling or scaling throughout the processes. The UM

model can be fitted to the majority of the infiltration

fields with a high degree of agreement. The estimated

UM model parameters show that the sparseness and

the stastical heterogeneity of the rain field have the

strongest effects on the watershed-average infiltration

rate. Less sparse and more heterogeneous rain will

lead to more infiltration on average. This result would

not be expected without simulating the processes of

run-on and subsequent augmented infiltration at

downslope positions, which demonstrates the import-

ance of including such process-based spatial inter-

actions in our model. The heterogeneity of a steady

rain field has the strongest effect on infiltration among

the scaling parameters of the rain field. More

heterogeneous rain fields usually lead to more

heterogeneous, less singular, and more space-filling

infiltration fields. However, the homogeneous rain

fields employed in this study did not produce

homogeneous infiltration fields. Strong singularity in

Ks fields also plays an important role in determining

the scaling properties of infiltration. More singular Ks

fields correspond to more singular and sparser

infiltration fields. The homogeneous Ks fields also

did not yield homogeneous infiltration fields in this

study.



Table 2

Effect of parameters of scaling space–time rain and scaling Ks on infiltration

Average field infil-

tration rate (cm/h)

Scaling

(minimum m R2
I )

Aerage

RRMSD_bI

Singularity

(aI)

Sparseness

(C1I)

Heterogeneity

(HI)

aR Y* Yes (0.91) 0.12 – – –

C1R – Yes (0.91) 0.07 – – –

HR ðdry soilYÞ Yes (0.88) 0.09 Y Y [

aKs
– Yes (0.89) 0.10 [ – –

C1Ks
– Yes (0.90) 0.07 – [ –

HKs
– Yes (0.87) 0.13 – – –

*[ means strong positive correlation, Y means strong negative correlation, and – means weak to medium correlation. m R2
I is the modified

coefficient of determination for infiltration scaling.
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A set of space–time rain fields was created from

large-size steady rainfall fields, which were essen-

tially steady rain fields with advection. Under these

space–time rainfall processes and scaling Ks fields,

infiltration fields exhibited some different behavior

from the case of steady rainfall because of the added

dynamics, but many other features were retained.

There were more variations in the time series of the

various infiltration properties such as the field average

infiltration rate compared to the case of steady rain.

The rain heterogeneity under the condition of dry soil

and the rain singularity showed the strongest, negative

influence on the field average infiltration. As in the

case of steady rain, the heterogeneity of a space–time

rain process had a strong and positive effect on the

heterogeneity of the infiltration field and a dominant

and negative effect on the singularity and the

sparseness of the latter. Both the singularity and the

sparseness of a Ks field were strongly proportional to

their respective properties of the corresponding

infiltration field. An interesting phenomenon was

observed in the numerical experiments under space–

time rain: The scaling parameters of infiltration fields

from homogeneous and close-to-homogeneous rain

fields usually varied with the rain field parameters in

the opposite direction to those from non-homo-

geneous rain. The same behavior was observed in

some experiments under steady rain. A major

difference between the space–time rain and the steady

rain was the clear and consistent pattern of temporal

trends manifested in the infiltration parameters in the

space–time rainfall cases. The directions of the trends

are determined by rain heterogeneity. The singularity

and the sparseness of the infiltration field decreased in
time if the rain field was relatively homogeneous, and

the trends reversed when the heterogeneity of the rain

field was high. The heterogeneity of the infiltration

field had a rising temporal trend under relatively

homogeneous rain.

The singularity and the sparseness of infiltration

fields usually had the same temporal trend while the

heterogeneity of infiltration field changed in the

opposite direction. These trends can be in time or in

the variation with rain or Ks parameters. For instance,

if an infiltration field subject to space–time rain

becomes less singular in time, it most likely also

becomes less sparse (or more space filling) and more

heterogeneous, and vice versa. These findings reveal

the internal connections among the scaling parameters

of infiltration process.

The relationships between the scaling behaviors

and the UM parameters of the driving fields and

those of the resulting infiltration fields provide

improved knowledge of the variables controlling

the spatial infiltration patterns. Such insight can be

useful for focusing on the dominant spatial pro-

cesses in similar landscapes, where intense rainfall

events drive Hortonian overland flow and infiltra-

tion processes. Scaling behavior of infiltration in

such landscapes may also be inferred from the

topography and surrogate measures of Ks across a

watershed.
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Appendix A

The formulas for generating a conservative physi-

cal field, 3l, using UM model are (Pecknold et al.,

1993)

3l Z eGl (A1)

~Gl Z=K1 C1

aK1

� �1=a

~SðaÞkKd=a0

f ðl;
�
kÞkdðlÞ

� �
(A2)

where l is scale ratio; ~Gl is the Fourier transform of

generator Gl; =K1 represents inverse Fourier trans-

form; k is wavenumber vector and k is wavenumber

vector modulus; ~S is Lévy noise in Fourier space; d is

the dimension of the underlying space;

a0Za=ðaK1Þ; k is a factor that makes up the

difference between a continuous Fourier transform

and the discrete fast Fourier transform (FFT); and the

function f ðl;
�
kÞ is 1 for k%l and decaying

exponentially for kOl to filter out wave numbers

greater than l.

A non-conservative field, V, is derived from its

fluctuation, DV, which is generated using the follow-

ing equation:

DVl Z=K1f~3kk
KHg (A3)

where ~3 is the Fourier transform of the underlying

conservative field 3. The operation described by

Eq. (A3) is a fractional integration of order H. Thus,

a fractional differentiation of order H is required to

derive the conservative field 3 from the non-

conservative field DV.
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